Serum-Free Medium Optimization Based on Trial Design and Support Vector Regression
نویسندگان
چکیده
منابع مشابه
Serum-Free Medium Optimization Based on Trial Design and Support Vector Regression
The Plackett-Burman design and support vector machine (SVM) were reported to be used on many fields such as some feature selections, protein structure prediction, or forecasting of other situations. Here, with suspension adapted Chinese hamster ovary (CHO) cells as the object of study, a serum-free medium for the culture of CHO cells in suspension was optimized by this method. Support vector ma...
متن کاملRegression Based on Support Vector Classification
In this article, we propose a novel regression method which is based solely on Support Vector Classification. The experiments show that the new method has comparable or better generalization performance than ε-insensitive Support Vector Regression. The tests were performed on synthetic data, on various publicly available regression data sets, and on stock price data. Furthermore, we demonstrate...
متن کاملSupport vector regression based on data shifting
In this article, we provide some preliminary theoretical analysis and extended practical experiments of a novel regression method proposed recently which is based on representing regression problems as classification ones with duplicated and shifted data. The main results regard partial equivalency of Bayes solutions for regression problems and the transformed classification ones, and improved ...
متن کاملPrediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron
Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BioMed Research International
سال: 2014
ISSN: 2314-6133,2314-6141
DOI: 10.1155/2014/269305